Estragole blocks neuronal excitability by direct inhibition of Na+ channels
نویسندگان
چکیده
Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance.
منابع مشابه
P 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis
Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...
متن کاملThe AMPK Activator A769662 Blocks Voltage-Gated Sodium Channels: Discovery of a Novel Pharmacophore with Potential Utility for Analgesic Development
Voltage-gated sodium channels (VGSC) regulate neuronal excitability by governing action potential (AP) generation and propagation. Recent studies have revealed that AMP-activated protein kinase (AMPK) activators decrease sensory neuron excitability, potentially by preventing sodium (Na+) channel phosphorylation by kinases such as ERK or via modulation of translation regulation pathways. The dir...
متن کاملMethadone is a local anaesthetic-like inhibitor of neuronal Na+ channels and blocks excitability of mouse peripheral nerves.
BACKGROUND Opioids enhance and prolong analgesia when applied as adjuvants to local anaesthetics (LAs). A possible molecular mechanism for this property is a direct inhibition of voltage-gated Na(+) channels which was reported for some opioids. Methadone is an effective adjuvant to LA and was recently reported to inhibit cardiac Na(+) channels. Here, we explore and compare LA properties of meth...
متن کاملThe modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)
Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...
متن کاملSuppression of potassium conductance by droperidol has influence on excitability of spinal sensory neurons.
BACKGROUND During spinal and epidural anesthesia with opioids, droperidol is added to prevent nausea and vomiting. The mechanisms of its action on spinal sensory neurons are not well understood. It was previously shown that droperidol selectively blocks a fast component of the Na+ current. The authors studied the action of droperidol on voltage-gated K+ channels and its effect on membrane excit...
متن کامل